

In-Situ Resource Utilization (ISRU) for Human Exploration of the Moon & Mars

Presentation to Lunar Strategic Roadmap Team Jan. 24, 2005

Jerry B. Sanders NASA/JSC Houston, TX, 77058 (281) 483-9066 gerald.b.sanders@nasa.gov

Uses of Space Resources for Robotic & Human Exploration

Mission Consumable Production

- Propellants for Lander/Ascent Vehicles, Surface Hoppers, & Aerial Vehicles
- Fuel cell reagents for mobile (rovers, EVA) & stationary backup power
- Life support consumables (oxygen, water, buffer gases)
- Gases for science equipment and drilling
- Bio-support products (soil, fertilizers, etc.)
- Feedstock for in-situ manufacturing & surface construction

Manufacturing w/ Space Resources

- Spare parts manufacturing
- Locally integrated systems & components (especially for increasing resource processing capabilities)
- High-mass, simple items (chairs, tables, chaises, etc.)

Surface Construction

- Radiation shielding for habitat & nuclear reactors from in-situ resources or products (Berms, bricks, & plates; water; hydrocarbons)
- Landing pad clearance, site preparation, roads, etc.
- Shielding from micro-meteoroid and landing/ascent plume debris
- Habitat and equipment protection

Space Utilities & Power

- Storage & distribution of mission consumables
- Thermal energy storage & use
- Solar energy (PV, concentrators, rectennas)
- Chemical energy (fuel cells, combustion, catalytic reactors, etc.)

NASA Vision & Exploration Challenges

To Meet NASA's Mission and to meet the challenge "to explore the universe and search for life" robotic and human exploration must be **Sustainable**, *Affordable*, **Flexible**, *Beneficial*, and *Safe*

Strategic Challenges	How ISRU Meets Challenge	
Margins & Redundancy	Use of common technologies/hardware and mission consumables enables swapping/cross use	
	See ASARA	
Reusability	Production of mission consumables (propellants, fuel cell reagents, science gases, etc.) enables reuse of typical single use assets	
Modularity	ISRU utilizes common technologies/hardware with life support, fuel cell power, and propulsion systems	
As Safe As Reasonably Achievable	Use of functional/dissimilar redundancy for mission critical systems (such as life support) increases mission safety	
	ISRU can eliminate aborts which may occur without capabilities: life support, power, spare parts, etc.	
	Use of in-situ materials for radiation shield enable lower levels of radiation exposure compared to Earth provided shielding	
Robotic Networks	ISRU incorporates robotic networks to enable ISRU capabilities before human occupation	
Affordable Logistics Pre- Positioning	ISRU enables large mass leveraging of pre-positioned hardware into usable mission products and consumables (space parts, propellants, life support gases, etc.)	
Energy Rich Systems & Missions	Regeneration of fuel cell reagents and common mission consumables and hardware enables power- rich EVA suits, robotic assistants, and rovers without the cost/overhead associated with multiple nuclear assets (RTGs)	
Access to Surface Targets	Production and regeneration of propellants and fuel cell reagents enables transport rovers and robotic and human surface hoppers at a fraction of the cost compared to dedicated missions launched from Earth	
Space Resource Utilization	All of above	

Space Resource Utilization is Critical for Affordable, Flexible, & Sustainable Exploration

Mass Reduction

- Reduces Earth to orbit mass by 20 to 45% for Mars missions
- 3.5:1 to 4:1 mass savings leverage from Moon/Mars surface back to Low Earth Orbit.

Risk Reduction & Flexibility

- Reduces dependence on Earth supplied logistics
- Use of common hardware & mission consumables enables increased flexibility
- In-situ fabrication of spare parts enables sustainability and self-sufficiency
- ISRU can provide dissimilar redundancy
- Radiation & Plume Shielding

Space Resource **Utilization**

- Develops material handling and processing technologies
- Provides infrastructure to support space commercialization
- Propellant/consumable depots at Earth-Moon L1 & Surface for **Human exploration &** commercial activities

Cost Reduction

- Reduces number and size of Earth launch vehicles
- Allows reuse of transportation assets
- Minimizes DDT&E cost

Expands Human Presence

- Propellants, life support, power, etc.
- Substitutes sustainable infrastructure cargo for propellant & consumable mass

ISRU Development & Incorporation Objectives

Objectives of Lunar ISRU Development & Incorporation

- Identify and characterize resources on Moon, especially polar region
- Demonstrate concepts, technologies, & hardware that reduce the cost & risk of human Moon & Mars missions
- Use Moon for operational experience and mission validation for Mars
 - Pre-deployment & activation of ISRU assets
 - Making and transferring mission consumables
 - Landing crew with pre-positioned return vehicle or 'empty' tanks
- Develop and evolve ISRU to support sustained, economical human presence on Moon and use for Earth-Moon and L1-to-Mars transportation
 - Lower Earth-to-Orbit launch needs
 - Enables reuse of transportation assets and single stage lander/ascent vehicles
 - ➤ Lower cost to government by initiating *government-commercial* activities to enable space commercialization and by opening new markets

Objectives of Mars ISRU Development & Incorporation

- Identify and characterize resources on Mars, especially water
- Demonstrate concepts, technologies, & hardware that reduce the cost & risk of human Mars missions
 - Lower Earth-to-Orbit launch needs
- Utilize Lunar demonstrated hardware & concepts to the maximum extent possible
- Enable human missions beyond Mars

Space Resource Utilization Dependencies

Architecture Dependant:

- Long stay vs short stay (mission consumable mass increases with stay time)
- Pre-deploy vs all in one mission (pre-deploy allows longer production times but requires precision landing)
- Multiple mission to same destination vs single missions (multiple missions enables gradual infrastructure and production rate build up)
- High orbit vs low orbit rendezvous (increase in Delta-V increases benefit of in-situ produced propellant)
- Reuse vs single mission (reuse allows for single stage vs two stage landers and lower cost propellant depots at E-M L1)

Customer dependant:

■ ISRU is only viable if use is designed into subsystems that utilize the products (propellants, radiation shielding, energy storage, surface equipment, spare parts, etc.)

Time phased:

- Early missions must require minimum infrastructure and provide the biggest mass/cost leverage (mission consumables have biggest impact)
- Surface construction and manufacturing will start with simple/high leverage products and expand to greater self-sufficiency capability
- ISRU is evolutionary and needs to build on lessons learned from previous work and show clear benefit metrics

Lunar ISRU Implementation Approach

Lunar Mission Assumptions with ISRU (Lunar Exploration Analysis Group-LEAG)

- Robotic precursors to identify resources and validate critical processes
- Early human missions (4 to 14 days) to check out systems and operations until long-term candidate site selected
 - Pre-deployed ISRU/mission assets before human missions
- Develop infrastructure at one base for Mars mission 'dress rehearsals' (90 day & 500 day) and sustained human presence in space
 - Traverse or hop to other locations for short term science mission objectives

Initial Capabilities

- Surface regolith excavation
 - Excavation for volatile extraction and regolith processing
 - Berms and shielding for radiation and plume protection
 - Site/landing pad preparation and road/dust mitigation
- Extraction & recovery of useful volatiles from surface resources (H₂, CO, N₂, H₂O)
- Oxygen (O₂) production from regolith processing
- Production/regeneration of fuel cell reagents
- Cryogenic storage & transfer

Mid-Term ISRU Capabilities

- In-situ fabrication and repair
- Space Power
- Thermal energy storage & use

Long-Term Lunar Capabilities

- In-situ manufacturing of complex parts and equipment
- Habitat and infrastructure construction (surface & subsurface)
- Life Support System bio support (soil, fertilizers, etc.)
- Helium-3 isotope (³He) mining

Lunar ISRU Commercialization

A partnership between industry and NASA can benefit both parties

- NASA Benefits
 - Access to extensive terrestrial hardware and experience
 - A proactive stance from industry could steer technology development toward products that have near-term market potential
 - Support from non-aerospace industries will be critical to gaining the attention and support of Congress.
- Industry Benefits
 - Opportunities for cost savings include co-development of ISRU with a commercial partner to provide low-cost propellants for human exploration and other markets.
 - The technologies required to reliably generate products from space resources can lead to Earth & space industrial applications
 - Anchor tenant and co-funding for technology and operations into emerging markets (ex. In-space refueling)

ISRU technologies with potential near-term Earth applications include:

- Miniaturized, low-power geologic sensors
- Wear-tolerant surfaces and bearings (increase component life)
- Electrostatic dust containment / removal
- Dry drilling systems
- Basalt processing into fibers, rebar, and other construction materials
- Micro-channel chemical and thermal processing systems

Markets for Lunar Propellants & Materials at Earth-Moon L1 and Cis-Lunar Space

Military Missions

Debris Management

Satellite Servicing & Refueling

International Space Station

Human Exploration

Space Solar Power

Roadmap for Evolutionary ISRU Campaign

Capabilities Resource

Assessment • Remote & Local

- Sensors
- Simulants

In-Situ Resource Excavation & Separation

- · Regolith Excavation
- Thermal/Microwave Extraction
- H₂O Separation
- CO₂ & N₂ Separation

Resource Processing

- Regolith Reduction for O₂ & Feedstock
- CO₂ Reduction
- H₂Ó Reduction
- Fuel Production

Consumable Storage & Distribution

- Cryocoolers
- Light Weight Tanks
- Disconnects/pumps
- Transfer/Distribution

In-Situ Manufacturing

- Solar cell production
- Metallic part fab
- · Polymer part fab.
- · Ceramic part fab.
- · Manufacturing NDE
- Metrology Processes

Next Steps & Recommendations

- Investigate Lunar resources, especially at lunar poles
- Incorporate & demonstrate ISRU hardware/systems in relevant environment in logical and orderly progression
- Maximize use of common technologies, hardware, and mission consumables between ISRU, propulsion, mobile power, life support, and EVA suit systems
- Evaluate & promote mission concepts and architectures that maximize use & benefits of ISRU
 - Robotic precursors and pre-positioning
 - Single base with surface traverse/hopping to maximize experience and infrastructure
 - Maximize Delta-V of lander/ascent vehicles with in-situ propellants
 - Reuse of transportation elements
 - Surface and in-space depots
 - Government-commercial partnerships

BACKUP CHARTS

ISRU Roadmap Capability Team

- Chair: Gerald Sanders (JSC)
- Co-Chair: Mike Duke (Colorado School of Mines)

NASA

- Lou Salerno (ARC)
- Kurt Sacksteder (GRC)
- Stu Nozette (HQ)
- Don Rapp (JPL)
- David McKay (JSC)
- Kris Romig (JSC)
- Robert Johnson (KSC)
- William Larson (KSC)
- Peter Curreri (MSFC)

Industry

- Ed McCullough (Boeing)
- Eric Rice (Orbitec)
- Larry Clark (Lockheed Martin)
- Robert Zubrin (Pioneer Astronautics)

Academia

- Brad Blair (Colorado School of Mines)
- Leslie Gertsch (Univ. of Missouri/Rolla)

In-Situ Resource Utilization (ISRU) Capability Breakdown Structure

Commonality-Dependency of ISRU With Other Capability Roadmaps Capability Products To ISRU ISRU Products To Other Capability

 Solar & nuclear power to support power-intensive ISRU activities

High-Energy Power & Propulsion

- H₂ & ³He for NTR & fusion; Ar for electric
- Solar array and collector manufacturing & assembly
- Rectenna fabrication for orbital power beaming
- Thermal storage material production & fabrication
- · Radiation shields for nuclear reactors

- ISRU-compatible propulsion
- Delivery of ISRU capabilities to sites of exploration
- Electromagnetic launch systems for delivery of ISRU products

In-Space Transportation

- Propellant production and pressurant/purge gases for lander reuse and in-space depots
- Aeroshells from Regolith

Advanced Telescopes & Observatories

Robotic Access to

Planetary Surfaces

- Shaping crater for collector
- In-situ construction and fabrication

- Resource location & characterization information
- Surface mobility system design & experience
- ISRU-compatible propulsion
- Delivery of ISRU capabilities to sites of exploration
- Carbon-based waste products as resource for ISRU

Human Health and

- Production of fuel cell reagents for rovers (vs solar arrays) or RTGs for certain missions)
- Propellant production for surface hoppers or large sample return missions
- Human Planetary Landing Systems
- Landing pads/plume debris shielding
- Propellant production/storage/transfer for lander reuse
- Support Systems
- Habitat/shelter fabrication
- Gases for inflation & buffer gases
- Life support consumable production for backup
- Radiation shields from in-situ material
- · Soil & bio-feedstock for plant growth
- Materials for in-situ manufacturing

- Crew/robotics/rovers to perform ISRU surface activities
- Robots/rovers to perform ISRU surface activities
- Software & FDIR logic for autonomous operation
- Resource location & characterization information

- **Human Exploration** Systems & Mobility
- Autonomous Systems & Robotics
- Scientific Instruments & Sensors

- Gases for science equipment
- · Propellants & fuel cell reactants for surface vehicles and aerò-bots
- O₂ production for EVA

daguaders, 5299483-9066, gerald.b.sanders1@jsc.nasa.gov

Why Develop ISRU For Human Mars Exploration?

Cost, Risk, and Benefit of human/robotic exploration are dependant upon:

- Mass delivered from Earth
- Surface operation and exploration effectiveness (No. of EVAs, crew size, science, etc.)
- Minimizing hazards and critical failures

ISRU Enables lower mission mass & cost

- In-situ propellant production reduces Earth launch mass or number of launches required
 3.5:1 to 4:1 mass savings leverage from Moon/Mars surface back to Low Earth Orbit
- Life support consumable production can amount to **several tens of MT of savings**, depending on degree of recycling and functional redundancy; emergency cache
- In-situ production capabilities can reduce mission abort scenarios thereby reducing costs

ISRU Enables "Flexible" & "Sustainable" planetary surface exploration

- In-situ production of oxygen enables long-term surface EVA (even with 100% closed loop life support)
- Use of common hardware & mission consumables enables increased flexibility
- In-situ fabrication of spare parts and surface infrastructure (power, habitats, shielding, etc.) enables sustainability and self-sufficiency
- ISRU can provide dissimilar redundancy thereby reducing mission risk

Critical resources are available on Mars & possibly Moon

- Mars atmospheric resources, Lunar solar wind volatiles, and metal oxides and silicates are widely available
- Water on Mars may be widely available and water at lunar poles is possible
 - However form and location require further investigation

NASA Vision & Exploration Challenges

To Meet NASA's Mission and to meet the challenge "to explore the universe and search for life" robotic and human exploration must be **Sustainable**, *Affordable*, **Flexible**, *Beneficial*, and *Safe*

Strategic Challenges	How ISRU Meets Challenge	
Margins & Redundancy	Use of common technologies/hardware and mission consumables enables swapping/cross use	
	See ASARA	
Reusability	Production of mission consumables (propellants, fuel cell reagents, science gases, etc.) enables reuse of typical single use assets	
Modularity	ISRU utilizes common technologies/hardware with life support, fuel cell power, and propulsion systems	
As Safe As Reasonably Achievable	Use of functional/dissimilar redundancy for mission critical systems (such as life support) increases mission safety	
	ISRU can eliminate aborts which may occur without capabilities: life support, power, spare parts, etc.	
	Use of in-situ materials for radiation shield enable lower levels of radiation exposure compared to Earth provided shielding	
Robotic Networks	ISRU incorporates robotic networks to enable ISRU capabilities before human occupation	
Affordable Logistics Pre- Positioning	ISRU enables large mass leveraging of pre-positioned hardware into usable mission products and consumables (space parts, propellants, life support gases, etc.)	
Energy Rich Systems & Missions	Regeneration of fuel cell reagents and common mission consumables and hardware enables power- rich EVA suits, robotic assistants, and rovers without the cost/overhead associated with multiple nuclear assets (RTGs)	
Access to Surface Targets	Production and regeneration of propellants and fuel cell reagents enables transport rovers and robotic and human surface hoppers at a fraction of the cost compared to dedicated missions launched from Earth	
Space Resource Utilization	All of above	

ISRU Enables Sustainable & Affordable Transportation & Surface Exploration

- Minimizes development & recurring mission cost due to common technologies and multiple applications
- Minimizes risk due to: functional backup for critical systems; flexibility in recovering from failures; placement & certification of Earth return vehicle and consumables prior to commitment to send humans
- Maximizes ability to reuse transportation assets
- Minimizes Earth launch mass & cost
- **Fnable ASARA**

Resupply & Servicing for Reuse Lunar Surface

Earth-Moon Libration Points

Oxygen, Water, & Propellant from Lunar ISRU

Propellant Depot for:

- L1 to Surface
- L1 to LEO
- L1 to Beyond

Earth Orbit **Operations**

Surface Exploration

Lander & Hopper Propellant

Common ISRU-provided consumables for Propulsion, EVA & Habitat Life Support, and EVA Suit & Rover Power

Shielding for Radiation & Dust/Plume Protection

In-situ production of oxygen is required to enable Accessible & Sustainable Planetary Surface exploration

ISRU Enables Highly Capable, Affordable & Sustainable Surface Exploration Infrastructure

Robotic Precursors & Tele-robotic Science

EVA Astronaut w/Robotic Assistant

EVA w/ Pressurized or Un-Pressurized Rovers

Crewed & Science Landers & Hoppers

✓ Power-rich environment enables new science, capabilities, and relaxed power constraints

- Single main power source produces oxygen & fuel cell reactants for all surface assets (EVA suits, rovers, etc.)
- High power on demand capability
- Swap new fuel cell reactants w/ used water on return with samples
- Modular common hardware for reduced logistics, higher reliability, and increased flexibility & safety
 - Reduced logistics needs
 - Simplified spare parts manufacturing or scavenging possible
- ✓ Production of common mission consumables increases mission effectiveness, sustainability, & provides functional redundancy to minimize risk
 - Resupply EVA O₂ & FC reactants from Rover to extend EVA or in case of emergency
- ✓ Infrastructure is <u>reusable</u> and easily <u>expandable</u> from simple robotic lander to full human presence
 - More assets can be added with increase in production capability
 - Increased surface access possible with ISRU
 - ISRU hoppers enable surface access at fraction of cost of dedicated lander mission
 - MAV size reduced if lander stage is reused with in-situ propellant

Common Resources & Processes Support Multiple Robotic/Human Mission Destinations

Planetary Resource Utilization is not Destination Specific!!

Possible Destinations

Moon

Mars & Phobos

Near Earth Asteroids & Extinct Comets

Europa

Titan

Common Resources

+

Water

- Moon
- Mars
- Comets
- Asteroids
- Europa
- Titan
- Triton
- Human Habitats

+

Carbon

- Mars (atm)
- Asteroids
- Comets
- Titan
- · Human Habitats

Metals & Oxides

- Moon
- Mars
- Asteroids

Helium-3

- Moon
- Jupiter
- Saturn
- Uranus
- Neptune

Core Building Blocks

- Atmosphere & Volatile Collection & Separation
- Regolith Processing to Extract O₂, Si, Metals
- In-Situ Manufacture of Parts & Solar Cells
- Water & Carbon Dioxide Processing
- Fine-grained Regolith Excavation & Refining
- Drilling
- Volatile Furnaces & Fluidized Beds
- 0-g & Surface
 Cryogenic
 Liquefaction, Storage,
 & Transfer

Core Technologies

- Microchannel Adsorption
- Constituent Freezing
- Molecular Sieves
- Hydrogen/Carbothermal Reduction
- Acid Reduction
- Water Electrolysis
- CO2 Electrolysis
- Sabatier Reactor
- RWGS Reactor
- Methane Reformer
- Microchannel Chem/thermal units
- Scoopers/buckets
- Conveyors/augers
- No fluid drilling
- Thermal/Microwave Heaters
- Heat Exchangers
- Liquid Vaporizers & Separators
- Cryo O₂ & Fuel Low Heatleak Tanks (0-g & reduced-g)
- Cryo O₂/Fuel Couplings & Transfer Lines

Logical Schematic Diagram (LSD) **Space Resource Utilization**

Technology Needs

Low heat leak valves etcLow loss Cryo transfer

Sub System Concepts

System Concepts

Capability

Core ISRU Technologies Enable Multiple Applications

Planetary Resource Utilization Maximizes Benefits, Flexibility, & Affordability

 Modular hardware & common mission fluids reduced logistics, increases reliability & flexibility, and reduces development and mission costs

In-Situ Production Of Consumables for Propulsion, Power, & ECLSS

Fuel Cell Power for Spacecraft, Rovers & EVA

0-g & Reduced-g Propellant Transfer

Core Technologies

- CO₂ & N₂ Acquisition & Separation
- Sabatier Reactor
- RWGS Reactor
- CO₂ Electrolysis
- Methane Reforming
- H₂O Separators
- H₂O Electrolysis
- H₂O Storage
- Heat Exchangers
- Liquid Vaporizers
- O₂ & Fuel Storage (0-g & reduced-g)
- O₂ Feed & Transfer Lines
- O₂/Fuel Couplings
- Fuel Cells
- O₂/Fuel Igniters & Thrusters

Life Support Systems for Habitats & EVA

Water – Gaseous H₂/O₂ Based Propulsion

Non-Toxic O₂-Based Propulsion

ISRU vs. Non-ISRU Mars Mission Study Results

Mars Sample Return with & without ISRU (Multiple Studies)

- 20% to 35% reduction in launch mass for Mars Sample Return
- Possible use of Delta II or Atlas II versus Titan IV or Proton reduces launch cost by a factor of 2 to 3
- ISRU enables Direct Earth return sample return mission with large sample (5+ kg)
- Propellant production unit for Mars sample return mission is:
 - Same scale of production unit to supply EVA oxygen or EVA fuel cell powered rover
 - Scalable to human mission propellant production package

Human Mars Missions

- 21 to 25% mass reduction for Human Mars Design Reference Mission
 - Smaller lander = smaller Mars trans stage and Mars orbit capture vehicles
 - Greater mass savings with increasing Delta-V (i.e. higher Mars rendezvous orbit)
- 3.63:1 mass savings leverage from Mars surface back to Low Earth Orbit, i.e. 30 MT of in-situ propellant production equals >100 MT in Low Earth Orbit

CSM Study: Propellant from the Moon will revolutionize our current space transportation approach

Lunar Resources Processing Options

Thermal Volatile Extraction

LUNAR RESOURCES

MARE REGOLITH

FeO•TiO₂ 98.5%

Pyroxene - 50%

CaO•SiO ₂	36.7%
MgO•SiO ₂	29.2%
FeO•SiO ₂	17.6%
Al ₂ O ₃ •SiŌ ₂	9.6%
TiO ₂ •SiO ₂	6.9%

Olivine - 15%

2MgO•SiO ₂	56.6%
2FeO•SiO ₂	42.7%

Anorthite - 20%

CaO•Al₂O₃•SiO₂ 97.7%

VOLATILES (Solar Wind & Polar Ice/H₂)

Past & Current Mars ISRU Activities

ISRU Technology Development

- Mars atmosphere adsorption pump collection (JPL, ARC, LMA, JSC, PNNL)
- Mars atmosphere solidification pump collection (LMA, SBIR)
- Volatile extraction from lunar soil (JSC/CSM)
- Zirconia CO₂ Electrolysis (Univ. of Arizona, Allied Signal, Old Dominion, SBIR)
- Water Electrolysis/Decomposition (JSC, LMA, SBIR)
- Reverse Water Gas Shift (SBIRs, KSC)
- Methane reformer (JPL, SBIR)
- Hydrocarbon fuel development (SBIR, JSC)
- Microchannel Chemical/Thermal System Technology for ISRU (PNNL, SBIR)
- Surface cryogenic liquefaction and storage (JSC, NIST, SBIRs, LMA)

ISRU Subsystem & System Development & Ground Testing

- CO₂ collection and storage subsystems tested
- 1st Generation Sabatier/Water Electrolysis (SWE) breadboard under ambient
 Mars environment testing
- 1st Generation Reverse Water Gas Shift with and w/o Fuel production
- 2nd Gen SWE system breadboard designed and subsystems built

ISRU Flight Demonstrations

- Mars ISPP Precursor (MIP) flight demo manifested on 2001Mars Surveyor Lander
 - Flight hardware certified and placed in Bonded Storage at JSC

Past & Current Lunar ISRU Activities

ISRU Technology Development

- Lunar polar regolith excavation (CSM/LMA)
- Hydrogen reduction of ilmenite/pyroclastic glass (JSC, Carbotek, Univ of Tenn.)
- Carbothermal reduction of regolith (Aeroject/ISP, Orbitec)

ISRU Subsystem & System Development & Ground Testing

- Hydrogen reduction of ilmenite/pyroclastic glass (JSC, Carbotek, Univ of Tenn.)
- Carbothermal reduction of regolith (Aeroject/ISP, Orbitec)

ISRU Flight Demonstrations

RESOLVE:

ISRU Challenges

Maximize benefit of using resources, in the shortest amount of time, while minimizing crew involvement and Earth delivered infrastructure

Early Mass, Cost, and/or Risk Reduction Benefits

- Processing and manufacturing techniques capable of producing 100's to 1000's their own mass of product in their useful lifetimes, with reasonable quality.
- Construction and erection techniques capable of producing complex structures from a variety of available materials.
- In-situ manufacture of spare parts and equipment with the minimum of required equipment and crew training
- Methods for energy efficient extracting oxygen and other consumables from lunar or Mars regolith
- Methods for mass, power, and volume efficient delivery and storage of hydrogen

Long-duration, autonomous operation

- Autonomous control & failure recovery (No crew for maintenance; Non-continuous monitoring)
- Long-duration operation (ex. 500 days on Mars surface for propellant production)

High reliability and minimum (zero) maintenance

- High reliability due to no (or minimal) maintenance capability for pre-deployed and robotic mission applications
- Networking/processing strategies (idle redundancy vs over-production/degraded performance)
- Development of highly reliable thermal/mechanical cycle units (valves, pumps, heat exchangers, etc.)
- Development of highly reliable, autonomous calibration control hardware (sensors, flowmeters, etc.)

ISRU Challenges (Cont.)

Operation in severe environments

- Efficient excavation of resources in extremely cold (ex. Lunar permanent shadows), dusty/abrasive, and/or micro-g environments (Asteroids, comets, Mars moons, etc.)
- Methods to mitigate dust/filtration for Mars atmospheric processing

Resource Unknowns

- Is water/ice, hydrogen, or both located in lunar polar and permanently shadowed crater? Is the ice/hydrogen accessible/useable?
- How much water is in the Mars regolith and can it be efficiently extracted? Is subterranean water present, what form is it in, and where?
- What are the material chemical and physical properties of Phobos & NEO asteroids? How much water is available and in what form/concentration is it found (ice, hydrated clays, ...)?

Why Fly ISRU Flight Demonstrations?

- Validate Earth-based development & testing
 - Mars environment interaction with ISRU plant can't be fully simulated on Earth
 - Extended periods of test to simulate long duration flights will be difficult to perform
- Utilize Flight Demonstrations to increase confidence in ISRU
 - Utilize opportunities to demonstrate ISRU technologies in non-critical path situations
 - Fly progressively more complex ISRU demonstration missions to minimize the risk and increase the confidence in use of ISRU for Mars sample return and human missions
- Reduce mission cost & design envelope
 - Incorporation of ISRU into robotic sample return missions will enable larger samples to be returned
 - Incorporation of ISRU into human missions will enable smaller landers or reduced launch vehicle needs
 - ISRU can provide O₂ for EVA and pressurized rovers, and will provide functional backups to ECLSS O₂ and H₂O sources.
- Engage & Excite Public
 - ISRU supports the American pioneer spirit of exploration by "living off the land"
 - It shows the public NASA is serious about Human exploration of Mars for a fraction of the cost of a full up human mission. Demonstrations build public support and constituency for eventual human exploration

Example Mars Base With ISRU Capability

Resource Processing Plants

Collapsible/ Inflatable Cryogenic Tanks

Multi-use
Construction/
Excavator:
resources,
berms, nuclear
power plant
placement, etc.

Reusable lander/ascent vehicle or surface hopper fueled with in-situ propellants

Landing pad & plume exhaust berm